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Abstract. This article investigates the functional properties of complex networks used as grid computing
systems. Complex networks following the Erdös-Rényi model and other models with a preferential attach-
ment rule (with and without growth) or priority to the connection of isolated nodes are studied. Regular
networks are also considered for comparison. The processing load of the parallel program executed on
the grid is assigned to the nodes on demand, and the efficiency of the overall computation is quantified in
terms of the parallel speedup. It is found that networks with preferential attachment allow lower computing
efficiency than networks with uniform link attachment. At the same time, considering only node clusters
of the same size, preferential attachment networks display better efficiencies. The regular networks, on
the other hand, display a poor efficiency, due to their implied larger internode distances. A correlation
is observed between the topological properties of the network, specially average cluster size, and their
respective computing efficiency.

PACS. 89.75.Fb Structures and organization in complex systems – 89.20.Ff Computer science and technol-
ogy – 89.20.Hh World Wide Web, Internet – 02.10.Ox Combinatorics; graph theory – 89.75.Hc Networks
and genealogical trees

1 Introduction

Among the many implications of the scientific and tech-
nological advances in microelectronics along the last
decades, the availability of microprocessors characterized
by ever diminishing size, cost and power consumption (per
operation), together with increasing computing power [1],
has led to an unprecedented opportunity for parallel com-
puting, allowing simulations of non-linear and complex
physical systems. More recently, the advent of the Internet
paved the way for using a network of computers to obtain
a very large and powerful computing system, defining the
new research areas of grid computing [2–4] and parasitic
computing [5].

A parallel computing system consists of a set of pro-
cessing elements connected by some kind of communica-
tion network. A parallel program runs on the system by
partitioning the work to be done in several pieces that are
executed on the available processing elements. To collab-
orate in the execution of the program, each piece must, as
a rule, communicate with others through the communica-
tion network. To show a good performance in the execu-
tion of a program, a parallel system must then: (i) make a
large number of processing elements available to the appli-
cation; and (ii) enable fast communications between these
processing elements.

For grid computing, the first condition can be met by
the large amount of computers available in the Internet,
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as long as their owners agree to make their processing
power available. But the second condition is difficult to
meet: even if high bandwidth networks are common, the
latency to deliver a message to a site geographically far
from the origin is large. The increased processing power
of microprocessors due to Moore’s law (i.e. the number
of transistors in a chip doubles each 1.5 years) contrasts
with the typically slow interconnection between process-
ing elements, thus undermining the performance of paral-
lel systems due to the relatively large time spent to send
data for processing elsewhere in comparison with the time
taken to process that data. A program will only have good
performance on the grid if the amount of computations
done is large in comparison with the time needed to send
a message between two processors. Thus, the effective use
of grid computing remains a challenge, demanding a deli-
cate balance between computation and interprocess com-
munication workloads. As a rule, the weaker the coupling
(i.e. the amount of communication needed) between dif-
ferent processing tasks, the higher the overall efficiency in
a given parallel system.

Generally, a more densely connected processing net-
work favors faster data transmission, as the mean distance
between nodes tends to decrease, but at the expense of ad-
ditional communication resources. Moreover, the specific
kind of processing to be performed and the availability
of the computer resources for collaborative (or parasitic)
computing also play an important role in defining the over-
all grid execution performance.
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The novel area of complex networks (e.g. [6–8]) has
drawn increasing interest of the physics community. A
large part of the success of such an approach derives from
the fact that such networks have been found to adhere,
at varying degrees, with important real phenomena such
as transmission of infectious diseases, social and ecolog-
ical interactions, and the Internet. The fact that today
most computers are interconnected through the Internet
has contributed further to promote the systematic inves-
tigation of the Internet characteristics, a task that can
greatly benefit from physical modeling approaches.

As several features are shared by grid computing sys-
tems and complex networks, much can be gained through
integrative and comparative approaches, allowing cross-
fertilization between those two important areas. The un-
derlying idea in the current work is to study the efficiency
of parallel/distributed architectures whose interconnec-
tions are defined in terms of complex network models.
Such an investigation therefore focus on the integration
between topology and function of the networks, an impor-
tant aspect of complex network research [8]. Regular net-
works, which are often used in parallel computing, are also
considered as a reference for comparison. It is particularly
interesting to verify how the specific properties of these in-
terconnecting schemes —such as the average vertex-vertex
distance and cluster size— affect the processing time and
efficiency for different network configurations. Such a pos-
sible dependence between the topological and functional
properties of the networks is backed by recent works which
verified that the emergent features of complex networks,
such as associative memory recall in neuronal networks,
can be strongly affected by the network interconnecting
scheme and phase transitions [9,10]. In related works, the
complex network paradigm has also been explored from
the perspective of search algorithms [11–13] and informa-
tion transfer in graphs [14–16].

2 Network models used

The main purpose of this article is to study the influence
of some network topological features in the efficiency of
a grid system for the execution of a suitable parallel pro-
gram. Therefore, we will not try to use network models
that reproduce the characteristics of the Internet; we in-
stead restrict ourselves to some simple models which are
described below. The models are undirected, reflecting the
bidirectional transfer of packets on the Internet.

Let a complex network be represented as a graph with
n nodes, identified as i, i = 0, . . . , n − 1, and unweighted,
undirected edges represented as (i, j). The first model con-
sidered is the Erdös-Rényi (ER) model with a fixed num-
ber c of edges. In this model, for each connection, two
nodes i and j are chosen uniformly among all the nodes
to establish the connection (i, j). Self-connections (connec-
tions of a node with itself) and duplicate connections (con-
nections between already connected nodes) are avoided in
this and all the following models.

ER graphs have a fast decaying degree distribution,
with very small probability for nodes with high degree

(also called hubs). To widen the degree distribution and
increase the probability of high degree nodes, a prefer-
ential attachment (PA) model is used. Networks in this
model are generated as described in [9]: starting with all
nodes without connections and choosing two nodes to con-
nect by drawing nodes from a list of node numbers repre-
sented in amount proportional to their respective number
of connections (plus one, to account for the unconnected
nodes). Note that this network model, although having
preferential attachment, has no growth and so does not
lead to scale-free networks (see Sect. 3.1).

Hubs of larger degrees can be found in scale-free net-
works. A simple model for scale-free networks was pro-
posed by Barabási and Albert [17]. In their model, the
network starts with m0 connected nodes and grows by
the addition of one node at a time. When a node is added,
m new connections from the new node to already exist-
ing nodes are made, and each already existing node can
be chosen to receive a connection with probability pro-
portional to its degree k. In this model, all nodes in the
network form a single large connected component; as we
are interested in studying the influence of percolation with
growing connectivity, their model is not adequate due to
the nonexistence of a percolation transition and to the im-
possibility of specifying an average connectivity that is not
an even integer (the average degree is always 2m). For this
reason, their model is here generalized as described in the
following. In the model used in this work, which we call
scale-free (SF) model, instead of having a fixed number of
connections for each new node i, a random number mi is
chosen using a Poisson distribution with mean m, and mi

connections from this node to the already existing nodes
are made. As some nodes may have mi = 0, the network
will have unconnected nodes; to enable these nodes to re-
ceive connections with the addition of new nodes, each
already existing node is chosen with probability propor-
tional do k + 1 instead of k. In this model, as m is only a
mean value, it can be any real number (instead of only an
integer number, as in the Barabási-Albert model); also,
as new nodes are not necessarily connected to the already
existing nodes, the network consists of many connected
components.

For grid computing, as for all kinds of collaborative
work between the agents represented by a network, the
binding of the agents to other agents of the network is a
necessity. There is, therefore, a tendency to bind nodes to
the network as new communication resources are available,
instead of using them to bind already connected nodes.
This suggests a different kind of random network construc-
tion: connecting new nodes to the network should be given
preference while there are still isolated nodes. For that
purpose, we introduce here two new models of random
networks. The parameters for their construction are: the
number of nodes n and the number of connections c.

In the first model, one end of each new edge is chosen
with uniform distribution among the isolated nodes and
the other end with uniform distribution among all nodes
(isolated or not). If at some point no more isolated nodes
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Fig. 1. Degree distributions for the network models. The ER model results appear in all figures, as a reference for comparison.
The networks have n = 100 000 nodes and z = 3: (a) preferential attachment; (b) insertion with uniform probability; (b) insertion
with preferential attachment; and (d) scale-free.

exist, both ends of the remaining edges are drawn with
uniform distribution among all nodes.

In the second model, one end of the new edge is drawn
randomly from the set of isolated nodes, as for the pre-
vious model, but the other end is drawn among all nodes
with probability proportional to the node degrees, as in
the previously discussed preferential attachment network.

We call these networks insertion networks, because the
connections are used to insert the nodes in the network;
the first model is called uniform-uniform (UU) insertion
network, and the second model uniform-preferential (UP)
insertion network.

For comparison, we study also three regular network
structures common in parallel systems [18]: the hyper-
cube and the 2D and 3D tori. The construction of an
hypercube with n nodes can be explained as follows. For
node i, represent the value of i in binary using �log2 n�
bits; there is a link (i, j) iff the binary representation
of j differ in exactly one bit from that of i. For exam-
ple, in an n = 8 network, node 3 (binary 011) is con-
nected to nodes 2 (010), 1 (001) and 7 (111). In the
bi-dimensional torus the nodes are distributed in a grid
of size (nx, ny) (with nxny = n), each node receiving
a label (x, y), where x = �i/ny� and y = i mod ny;
node (x, y) is connected with node (x′, y′) iff x′ = x and
(y′ = y ± 1) mod ny or y′ = y and (x′ = x ± 1) mod nx.
For example, in a n = 8 bi-dimensional torus organized as
a 2× 4 grid, node 3 corresponds to coordinates (0, 3) and
is connected to nodes 2 (0, 2), 0 (0, 0), and 7 (1, 3). The
three-dimensional torus is similarly constructed.

3 Results

The results are divided in two parts. First, some results
concerning the properties of the network models described
are presented. Then, results obtained by using these net-
work models as communication infrastructure for the sim-
ulation of the execution of a parallel program on a grid
are shown.

3.1 Network properties

A thorough analysis of the network models described is
out of the scope of this paper. Here only some properties

of interest to the analysis of the following grid simulation
results (Sect. 3.2) are presented.

The topological properties of those networks are quan-
tified in terms of the following measures: (a) node degree k;
(b) mean vertex-vertex distance � = 2

n(n−1)

∑
i>j dij

where dij is the geodesic distance (distance, in number
of links, of the shortest path) between nodes i and j and
the summation includes only pairs ij that have a path
connecting them; and (c) mean cluster size s. A cluster,
also know as a connected component, is a set of directly or
indirectly connected nodes, i.e., nodes that can be reached
from all the other nodes on the cluster by a path. To eval-
uate the mean cluster size, we compute for each node of
the network the number of nodes on its cluster and take
the average of these values for all nodes on the network.
Note that this average includes the largest cluster, and is
dominated by it after percolation. To enable the compar-
ison between the different complex networks models with
respect to their connectivity, we use the parameter z de-
fined as z = 2m for the SF model and z = 2c/n for the
other models. In the limit of large n we have z = 〈k〉 for
all network models.

In the following, network characteristics are quantified
as averages for 50 random networks for each set of param-
eters. Error bars display the 99% confidence interval for
the computed average, considering normal distribution of
the averaged values.

The degree distributions for each of the considered
models for n = 100 000 and z = 3, compared with the
ER model, are presented in Figure 1, where P (k) is the
cumulative probability distribution (probability of finding
a node in the network with degree larger than k). The
UU model is almost indistinguishable from the ER model
in terms of degree distribution. Due to the preferential
attachment rule, the PA and UP models have broader de-
gree distributions. For the UP model this effect is not so
marked due to the preference given to newly added nodes
in new connections. As expected, the SF model follows a
power law (with a finite-size cutoff), given rise to a large
probability of nodes with high degree.

Figure 2 gives the average network cluster size 〈s〉 nor-
malized by the network size n, and Figure 3 shows the av-
erage node distance 〈�〉 for the networks. These results are
shown as functions of z comparatively to the ER model. As
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Fig. 2. Normalized average cluster size, for n = 1000, for the PA (a), UU (b), UP (c) and SF (d) models, compared with the
ER model.

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8 9 10

〈�〉

z

PA
ER

(a)

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8 9 10

〈�〉

z

UU
ER

(b)

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8 9 10

〈�〉

z

UP
ER

(c)

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8 9 10

〈�〉

z

SF
ER

(d)

Fig. 3. Average distance between connected pairs, for n = 1000, for the PA (a), UU (b), UP (c) and SF (d) models, compared
with the ER model.

Figures 2a−d show, there is an abrupt transition (a per-
colation transition) from small to large cluster sizes as
the connectivity grows. In the small cluster size region,
the mean distance tends to grow with the connectivity
(Fig. 3), as new links result in new connections between
previously unconnected nodes; in the large cluster region,
increased connectivity reduces mean distance, as most of
the nodes are already connected in the largest cluster. A
striking feature of the results for the PA model (and to

some extent for the SF model) is the small cluster sizes
even for high connectivity. The reason is that, as the num-
ber of nodes connected in the largest cluster grows, the
probability of linking an unconnected node is very small,
due to the preferential attachment rule used to choose the
ends of new links, resulting in a relatively large number
of isolated nodes or small clusters. In the SF model, this
problem is minimized by the fact that one end of each new
connection always go to a new (previously unconnected)
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Fig. 4. Cumulative probability distribution of cluster size P (s) (probability of a randomly selected node being part of a cluster
of size s′ ≥ s) in terms of s/n and parallel efficiency P (E) (probability of a randomly selected node achieving efficiency E′ ≥ E
when chosen as master) for the five models: (a) ER; (b) PA; (c) UU; (d) UP; and (e) SF. Distributions shown for five different
average connectivity (z) values: z = 0.4 (♦); z = 0.8 (+); z = 1.2 (�); z = 2.0 (×); and z = 5.0 (◦). Network size: n = 1000;
number of work packets M = 5000; work packet size L = 100.

node. The insertion (UU and UP) models show very simi-
lar behavior in terms of average distance and cluster size.
The formation of a cluster spanning most of the nodes
occurs for these models for higher connectivities than for
the ER model. The explanation is that links that could be
used to connect small clusters to form a larger one are be-
ing used to link new nodes. On the other hand, the size of
the resulting largest cluster tends to be larger, as isolated
nodes are less likely to appear. Distances in these mod-
els tend to be higher than in the ER model, because the
same number of links is used to connect a larger number

of nodes. For sufficiently higher connectivities, this last
property is compensated in the UP model by the onset of
high degree nodes (hubs), that shorten the mean distance
between the nodes of the cluster. The presence of hubs is
also the explanation for the smaller distances shown by
the PA and SF models; this advantage vanishes as the
connectivity grows.

More detail about the size of clusters is given in the left
side of Figures 4a−e, which display the cumulative proba-
bility distribution of cluster sizes (i.e. the probability P (s)
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that a randomly selected node is part of a cluster of size
greater or equal to s) against s/n for some values of z.
These figures show that for small average connectivities
the probability of finding a large cluster is negligible. On
the other hand, for sufficiently large average connectivities
almost all nodes are found in large clusters. The models
without preferential attachment (ER, Fig. 4a, and spe-
cially the insertion models, UU Figs. 4c and UP Fig. 4d)
show a sharp transition from a regime with low probability
of large clusters and high probability of small clusters to
a regime with high probability of large clusters and small
probability of small clusters. On the preferential attach-
ment models (PA, Fig. 4b, and SF, Fig. 4e), this transition
is more gradual; they also display a larger probability of
medium sized clusters before the percolation.

In the regular networks, all nodes are connected, and so
〈s〉 /n = 1. Also, the value of z is fixed for each network
type, given n. The third column of Table 1 shows the
values of the average distance for these network types.

3.2 Grid simulations

The parallel computing systems were obtained by
assigning a processing unity to each network node, while
messages flow along the network edges. The distributed
application considered follows the master/slave paradigm
(also known as manager/worker or bag of tasks), where
a master delivers processing tasks on demand to slave
computers. The computational tasks are assumed to be
completely independent, in the sense that each node can
proceed without additional communications after receiv-
ing the work packet. This arrangement is similar to many
grid computing efforts, like SETI@home [19]. The com-
putations are partitioned into M work packets (tasks),
each requiring the same amount L of computing time.
The communication cost is taken to correspond to the
minimum number of edges between the master and the
slave requesting the data. The edge communication over-
head is therefore equal for all edges and adopted as time
unit. Taking into account this communication cost model,
the very small number of short cycles present in all the
considered network models (compared with the Internet)
does not represent an additional limitation.

Given a network, each node i at a time is considered
as master. The nodes that are part of the same cluster as
the master start requesting tasks. The nodes that are not
part of the same cluster as the master cannot contribute
to the computation because of the lack of connection to
the master. After receiving a task from the master, the
slave computes the result, taking time L, and sends it,
together with a request for another task, to the master.
When all M tasks have been delivered and their results
received, the master terminates the execution and com-
putes its total execution time Ti. Isolated nodes cannot
take part on a distributed computation and so, when cho-
sen as master nodes, their execution time is considered
infinite (they will wait forever to receive a work request
from a slave).

Table 1. The topological and efficiency measurements for the
three considered regular topologies (n = 1000).

Network type z 〈�〉 〈E〉
2D torus 4 16 ± 7 0.664

3D torus 6 7 ± 3 0.778

Hypercube 9.9 ± 0.4 5 ± 2 0.816

To quantify the suitability of the network models for
grid computing we compute the average speedup achieved
by the execution of the application on the networks. The
speedup is defined as the ratio between sequential and
parallel execution times. For the problem considered, the
parallel execution time for master node i is the value
of Ti discussed in the previous paragraph and the sequen-
tial execution time is ML, so that Si = ML

Ti
is the speedup.

The mean speedup of a network is the mean value 1
n

∑
Si.

Note that, for isolated nodes, as discussed, Ti = ∞ and
so Si = 0; as these nodes are anyway considered in the
average, if a network has many isolated nodes its average
speedup is low. Another equivalent measure, used in our
results, is the normalized speedup E = S/n, also known
as parallel efficiency. The averages 〈S〉 and 〈E〉 are then
taken for 50 different random networks for each model and
parameter set.

If master i sends a task to slave j, the time to complete
the task (get the result back) is the sum of the computa-
tion time of the task with the time taken to send the task
to the slave node and receive it back, that is, L + 2dij . At
the same time, the number of nodes computing tasks is
si −1 (si is the size of the cluster of master node i and we
subtract one because the master does not compute tasks).
This indicates that, for the problem considered, two im-
portant network metrics are the average cluster size 〈s〉
(Fig. 2) and average distance � between nodes with a path
connecting them (Fig. 3).

The number of tasks M was chosen so that each node
has some tasks to process, but avoiding too large num-
ber of tasks, because the simulation time is proportional
to M ; the size of the tasks L was chosen to achieve compu-
tation times larger than the average communication time
(two times the average distance; see also Figs. 3a−d), but
small enough such that the communication time has a
detectable effect. If L is too large, the average communi-
cation time, and then the network structure, is not impor-
tant; if it is too small, the grid system is not a good choice
for the execution of the application. Figure 5a shows the
dependence of average efficiency 〈E〉 with the number of
tasks M (for fixed L = 100, n = 1000, and z = 3) for
the five models. If M is small, there will be not enough
computational work to distribute evenly among the nodes,
resulting in very small efficiencies; after some value of M,
the efficiency is not much affected by a further increase
of M. The relation of the efficiency with L is very simi-
lar: a larger value o L helps reduce the importance of the
communication costs, increasing the efficiency; Figure 5b
plots this relation (for M = 5000, n = 1000, and z = 3).
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Fig. 5. Parallel efficiency 〈E〉 as a function of the number M (a) and size L (b) of work packets. Network parameters are
n = 1000 and z = 3. In (a) L = 100 and in (b) M = 5000.
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Fig. 6. Average parallel efficiency for n = 1000, M = 5000, L = 100, for the PA (a), UU (b), UP (c) and SF (d) models,
compared with the ER model.

It can be seen that after L ≈ 100 there is no significant
increase in efficiency for larger L. The following results
assume M = 5000 and L = 100; results for other values
show no qualitative differences.

Figures 6a−d present the average parallel efficiency as
a function the z for M = 5000 and L = 100. As can be eas-
ily seen by comparing Figures 2a−d and 6a−d, the average
parallel efficiency tends to closely reflect the normalized
average cluster size for all considered models.

This is further substantiated by a comparison of the
left and right graphs of Figures 4a−e. The right graphs
show the cumulative probability distribution P (E) of a
randomly selected node having efficiency greater or equal
to E when chosen as master node. It can be seen that P (E)
closely follows P (s). The main differences are that the
P (E) curves are smoother and the largest achievable val-
ues of E smaller than that of s/n. The latter difference
is a result of the fact that a cluster with s nodes can-
not achieve speedup S, because the master node does not
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Fig. 7. Scatter plot of efficiency against cluster size, for n =
1000, M = 5000 and L = 100.

compute and the communication costs increase the execu-
tion time of each task (in comparison to sequential execu-
tion); the former difference is due to the fact that different
clusters with the same number of nodes s have different
interconnection topology, resulting in different communi-
cation costs.

As a consequence, similar conclusions can be drawn
for the efficiency of a grid computing network as for the
mean cluster sizes of the corresponding network model.
Particularly, we note a percolation transition of the effi-
ciency with increasing connectivity from a regime of very
small efficiency to a regime of high efficiency. This transi-
tion is more abrupt for the ER and particularly for the
UU and UP models, and somewhat slower for the PA
and SF models. The efficiency of the models with pref-
erential attachment is restricted due to the already dis-
cussed higher number of isolated nodes, that contribute to
a speedup of zero to the average speedup. The insertion
models need a higher connectivity to reach the percolation
point, but after that show a higher efficiency, demonstrat-
ing the advantage of using network resources to connect
new nodes.

The strong correlation between the cluster size and
parallel efficiency is further substantiated in Figure 7,
where a scatter plot of efficiency against normalized clus-
ter size is shown, that demonstrates the almost linear cor-
relation between efficiency and normalized cluster sizes.
Another interesting result observed from this figure is that
the PA and SF networks tend to provide slightly better
efficiencies than the other models. In other words, if clus-
ters of similar size are considered, the presence of hubs
that “short-circuit” the distances tends to enhance the
speed-up of the computations in the networks.

In order to further investigate such a possible effect
of the intrinsic connectivity properties of the considered
models over the respective performance, the largest clus-
ters of the five models were considered in isolation in the
grid simulations. That is, networks with the same con-
nectivity were generated and only their largest clusters
where considered. Special care was taken so as to obtain
such connected clusters with equivalent number of nodes
(about 1000 nodes). The results are shown in Figure 8a−d,
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Fig. 8. Efficiency of the largest clusters 〈Elargest〉, for the
PA (a), UU (b), UP (c) and SF (d) models, compared with
the ER model. In all cases M = 5000 and L = 100 and the size
of the networks was chosen to have a largest cluster of about
1000 nodes.

where the efficiency of the parallel execution on the largest
clusters, 〈Elargest〉, are plotted. As we are considering here
only the largest clusters, the efficiency is computed with
respect to the number of nodes of the cluster, and not of
the whole network. The results indicate a definite ten-
dency of the SF model, and to a lesser extent of the
PA model, to outperform the others. Such an effect is
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possibly a consequence of the shorter average lengths usu-
ally observed for this model —see Figure 3a−d— and the
presence of hubs which act as message distribution nodes.

The results obtained for the regular topologies (hyper-
cube and 2D and 3D torus) for n = 1000 are shown in
Table 1. Interestingly, the 2D and 3D torus regular archi-
tectures led to rather low efficiencies, despite their rela-
tively large node degrees, reflecting the respective large
average distances, due to the absence of shortcut links in
the regular structure of these networks. The hypercube
topology allowed efficiencies comparable to the maximum
obtained for the network models, but at the expense of
almost 10 connections per node, which implies a high net-
work cost.

4 Conclusions

While the scale-free and preferential attachment mod-
els allowed better efficiency considering only the largest
cluster, the Erdös-Rényi model tended to provide better
average speedup when all clusters where considered, as
a consequence of the smaller number of isolated clusters
implied by this type of network. The insertion models re-
sulted in even better efficiencies, due to the inclusion of
more nodes in the largest cluster after percolation. The
random models had better efficiencies than the regular
ones, due to the implied smaller average distances.

The results show that a network is of little use for grid
computing before the percolation point is reached, that is,
for values of z before the formation of a cluster spanning
most of the nodes, because of the very small resulting ef-
ficiencies. In other words, the percolation of the network
used as a grid computing resource is of fundamental im-
portance to the utility of the grid. Although the Inter-
net already connects a very large number of computers,
the use of these computers for grid computing is subject
mainly to two limitations: a consent from the part of their
owner and the installation of a grid computing software
on them. It is therefore appropriate to consider the grid
network as distinct from the Internet, and two computers
in the Internet as connected in the grid network only if
their owners have given permission to use and installed
an appropriate set of protocols and compatible software.
In this aspect, the obtained results motivate the grid com-
munity to achieve convergence in protocols and software,
as the presence of many incompatible software platforms
represent the presence of unconnected clusters of nodes in
the network. This conclusion is related with the efficiency
of the network as a whole for grid computing; for users in
isolated clusters, the execution of an application in these
clusters can be nevertheless of interest, if enough speedup
is achieved.

Future work should extend the analysis to other
types of distributed systems and applications. Network
models closer to some real Internet characteristics, as
in [20], should be considered. The inclusion of measures to
quantify the load of intermediate nodes in packet trans-
mission [21], like betweenness centrality, can improve the

results, although centrality is non-trivially related to traf-
fic flow if congestion is considered [22]. If the assumption
of communication through shortest paths (that requires
global knowledge) is relaxed, the use of local search al-
gorithms [12] will result in stronger dependence of effi-
ciency with the network structure. A further refinement
in this direction is to consider queuing of packets on the
nodes and congestion. Recent works [15,16] have shown
that transmission times are in this case not directly re-
lated to shortest distances, but have a much richer be-
havior, depending also on the total communication load
carried by the network.

Another important generalization is to consider com-
plex networks presenting links with different communica-
tion speeds. This can be modeled using weighted networks,
in which the weight of the links reflect the bandwidth or
inverse latency of the interconnecting links. Also the nodes
can display different processing powers. These generaliza-
tions make the network models closer to real interconnec-
tion networks.

The generalization of the parallel application model to
include communications between the tasks is of interest,
expanding the classes of applications modeled and due to
the importance of the network topology to the efficiency of
these communications, resulting in an interesting interplay
between network and application characteristics.

We conjecture that even with the generalization of
the network, routing and application models, as suggested
above, the efficiency will remain strongly related with clus-
ter size, although the correlation with shortest distance
may be reduced, and other network features may increase
their importance, resulting in stronger influence of the net-
work model used.
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20. B. Tadić, Physica A 293, 273 (2003)
21. K.I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701

(2001)
22. P. Holme, Adv. Complex Syst. 6, 163 (2003)


